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Abstract The ring-opening polymerization of 2,2-dimethyltrimethylene carbonate
(DTC) catalyzed with imidazol-2-ylidenes substituted by benzyl, isopropyl, and
methyl was conducted. The influences of substitutional group, monomer, catalyst,
and initiator (benzyl alcohol) concentration, as well as polymerization temperature
and reaction time were investigated in detail. The kinetics studies indicate that the
polymerization rate is first-order with respect to both monomer and catalyst con-
centrations. The overall activation energy amounts to 51.06 kJ/mol. Mechanistic
studies reveal that the 2,2-DTC polymerization proceeds according to a monomer-

activated process.
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Introduction

As a class of the most attractive biomaterials, aliphatic polyesters attract much
attention because of their wide applications in biomedical fields such as tissue
engineering and drug controlled release, due to the surface erosion degradation

mechanism [1], high permeability, and the good biocompatibility.
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Various organometallic catalysts have been used for the ring-opening polymer-
ization of cyclic carbonates [2—-10]. However, it is difficult to remove the metal
contaminants which compromised the resultant polymer performance in biomedical
and microelectronic applications [4, 11]. Considering the problems surrounding the
use of metal catalysts, a few efforts were devoted to using metal-free organocatalyts
[12-21] such as N-heterocyclic carbenes (NHCs), 4-N,N-dimethylaminopyridine
and so on for cyclic esters polymerization such as e-caprolactone, lactide exception
of 2,2-dimethyltrimethylene carbonate (DTC), to the best of our knowledge.

In this article, we report the ring-opening polymerization of DTC using imidazol-
2-ylidenes substituted by benzyl, isopropyl, methyl (Scheme 1) as catalysts
separately and present the relation between the structures and catalytic activity of
imidazol-2-ylidenes, with emphasis on the polymerization characteristics, kinetics,
and mechanism.

Experimental
Materials

2,2-DTC was synthesized according to ref [22], and dried over phosphorus
pentoxide. Benzyl alcohol (BnOH) was dried over calcium hydride for 48 h, and
then distilled under reduced pressure before use. Tetrahydrofuran (THF) was freshly
distilled from Na/benzophenone before use. All other materials were analytical
grade and used as received.

Catalyst preparation

All catalyst preparations were performed with Schlenk tubes and a vacuum-line
technique under purified nitrogen. Imidazol-2-ylidenes (Scheme 1) were prepared
by already reported methods [23-25], and those compounds were characterized by
'"H NMR [l-isopropyl-3-benzylimidazol-2-ylidene (1) 'H NMR (CDCls,
600 MHz):1.54-15.6 (d, 6H); 4.55-4.62 (m, 1H); 5.30 (s, 2H); 7.16-7.19 (d, 2H);
7.33-7.35 (q, 5H). 1-methyl-3-benzylimidazol-2-ylidene (2) '"H NMR (CDCl3,
600 MHz):3.27 (s, 3H); 5.34 (s, 2H); 7.16-7.18 (d, 2H); 7.33-7.36 (q, 5H). 1,3-
dibenzylimidazol-2-ylidene (3) 'H NMR (CDCl;, 600 MHz):5.40 (s, 4H);
7.16-7.18 (d, 4H); 7.35-7.38 (q, 10H)]. As the precursor of carbene catalysts,
hydrophobic imidazolium hexafluorophosphates were prepared from its halogen salt
which slightly modified in literature [26-28].
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Scheme 1 The structures of imidazol-2-ylidenes
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Measurements

"H NMR spectra of obtained polymer was performed on a Bruker AV-600MHz
spectrometer using CDCl; or DMSO-dg at 25 °C with TMS as internal standard.
Differential scanning calorimetry (DSC) was performed two heating and cooling
cycles in the temperature range —60 to 150 °C at a heating rate of 10 °C/min with a
DSC 2010 instrument. Number average molecular weight (M,,) and polydispersity
(PDI) of PDTC were measured in THF at 40 °C by Gel permeation chromatography
220 (GPC) with a refractive index detector and a set of columns (PL gel 10 m
Mixed-B 300 x 7.5 mm and PL gel 10 m Guard 50 x 7.5 mm) and calibrated
using polystyrene standards.

Polymerization procedure

All polymerizations were carried out in glass ampoules under inert gases. Monomer
and solvent were added into the ampoules successively and kept thermostated.
Initiator and catalyst were added to the ampoule according to priority by syringe.
The polymerization was quenched by distilled water. The polymer was washed with
methanol twice, and then dried to constant weight under vacuum at 40 °C.

Results and discussion
Characteristics of the polymerization

Three imidazol-2-ylidenes substituted by different groups as catalysts were utilized
to examine their catalytic activity for the DTC ring-opening polymerization. The
polymerization results are summarized in Table 1. As experimental results shown,
the order of catalytic effect is 1 > 2 > 3. It indicated that catalytic activity of NHC/
BnOH system is dramatically influenced by the donation-electronic inductive effect.
When electron-donating ability of group on N-imidazol-2-ylidenes becomes greater,
the catalytic activity of imidazol-2-ylidenes is also increasing.

Using 1 as catalyst, the effects of DTC concentration and initiator amount have
been investigated in detail and the result is shown in Figs. 1 and 2, respectively. As
shown in Fig. 1, the monomer conversion and molecular weight of PDTC tend to
rise with increasing DTC concentration till [DTC] > 3.0 mol/L. With higher
concentration, the monomer conversion and the M,, of polymer decrease and the PDI

Table 1 Effect of different NHCs on polymerization of DTC initiated by BnOH

No. Catalyst Cov. (%) Mn x 107* (g mol™h) PDI

1 99.2 2.82 1.31
2 2 68.8 1.57 1.37
3 3 49.5 1.11 1.27

Condition: [DTC] = 3.0 mol/L, [DTCJ/[I])/[C] = 200/1/1, 25 °C, 70 min, in THF
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Fig. 1 Effect of monomer concentration on polymerization of DTC; conditions: [DTC]/[I] = 200, [C)/
[/] =1, 0 °C, 70 min, in THF

broadens. Figure 2 illustrates that [DTC]/[I] of 200 molar ratio is essential for
preparing high yield and molecular weight polymer. The polymerization could not
happen when further decreasing initiator content, yet increasing initiator content
presumably leads to forming more and shorter polymeric chains, thus decreasing the
molecular weight of polymer. Therefore, the optimum DTC concentration and
initiator amount on the polymerization are as follows: [DTC] = 3.0 mol/L, [DTC)/
[1] = 200.

The influences of polymerization time and temperature, catalyst to initiator molar
ratio ([C)/[I]) were systematically conducted in Table 2. As seen in Table 2, the
monomer conversion, M, and PDI of PDTC can be controlled by varying factors
mentioned above. The M,, of PDTC obtained is in the range of (1.07-2.82) x 10,

It was also found that the relation between M,, of PDTC with the conversion of
DTC, as shown in Fig. 3, indicating that there is a linear relationship, consistent
with a living polymerization.

The DSC measurement of the PDTC sample displays two different crystalline
modifications (Fig. 4). Modification A gives a transition temperature of 89.2 °C and
modification B has a melting point of 115.2 °C at first heating. Upon cooling and
reheating, modification A completely disappears and a melting point of 115.4 °C is
only observed. This is due to the sample no longer exists solution crystallization of
condition, then modification A cannot take shape, while melt crystallization is the
condition to form modification B, therefore it can only form modification B.

Kinetics of 2,2-DTC polymerization
The kinetics of the DTC polymerization with 1 initiated by BnOH in THF was

investigated. Linear plots of In([DTC]/[DTC],) versus time at four different catalyst
concentrations at conversions below 41% indicate that the polymerization is of first

@ Springer



Polym. Bull. (2012) 68:141-150

145

conversion(%)

3.0
|
98 °
o.
>
-2.4
91 1
o\/.'
N
84 r1.8 2
<
O
o =
77 1
1.2
70 1
0.6
[ ]
T T T T T
75 150 225 300 375

[DTCY/[I] molar ratio

Fig. 2 Effect of the initiator concentration on polymerization of DTC; conditions: [DTC] = 3.0 mol/L,

[C)/1] = 1, 25 °C, 70 min, in THF

Table 2 Polymerization of DTC with 1 initiated by BnOH

No. an Temp (°C) Time (min) Conv. (%) Mn x 107* (g mol™") PDI
1 1.00 25 50 88.7 2.20 1.27
2 1.00 25 60 94.2 2.36 1.30
3 1.00 25 70 99.2 2.82 131
4 1.00 25 80 96.7 2.51 1.33
5 1.00 25 90 95.8 2.48 1.36
6 1.00 5 70 61.6 2.00 1.21
7 1.00 15 70 87.2 2.22 1.24
8 1.00 35 70 924 2.23 1.51
9 1.00 45 70 88.4 1.97 1.65
10 0.50 25 70 47.8 1.07 1.15
11 0.75 25 70 87.8 1.74 1.25
12 1.25 25 70 9.6 2.38 1.44
13 1.50 25 70 86.1 1.98 1.74

Conditions: [DTC] = 3.0 mol/L, [DTC]/[I] = 200, in THF

order with respect to monomer (Fig. 5). A first order in the catalyst was also
obtained from the slopes of the plots in Fig. 6. Therefore, the polymerization

follows an overall kinetic law of the following form:

R, = kp[DTC][1]

where k;, is the polymerization rate constant. The relationship between the InR,, and
the reciprocal of polymerization temperature (1/7) has been plotted in Fig. 7.
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Fig. 3 Relation between molecular weight and the conversion; conditions: [DTC] = 3.0 mol/L, [DTC)/
[1] = 200, [CV/[I] = 1, 25 °C, in THF
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Fig. 4 DSC curves of PDTC. (a) First heating and (b) second heating

According to the Arrhenius equation, the overall activation energy is 51.06 kJ/mol
(Scheme 2).

Mechanism of 2,2-DTC polymerization

The possible mechanism catalyzed by NHCs can catalyze polymerization is a
monomer-activated mechanism commonly accepted by majority experts analogous
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Fig. 5 In ([DTC]y/[DTC],) as a function of time; conditions: [DTC] = 3.00 mol/L, [DTCJ/[/] = 200,
25 °C, in THF
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Fig. 6 Plot of InR,, versus In[C]; conditions: [DTC] = 3.00 mol/L, [DTCJ/[{] = 200, 25 °C, in THF

to the pathway of the ring-opening polymerization of cyclic esters with enzymes
[14, 29]. According to the mechanism, initiation occurs when the nucleophile BnOH
reacts with the DTC catalyst complex to form the ring-opened adduct, the a-chain
end of the PDTC bears the ester from the initiating BnOH and the w-chain end is a
primary alcohol and serves as the nucleophile in subsequent propagation. Consistent
with this mechanism, the '"H NMR spectrum of the PDTC, initiated with BnOH in
the presence of 1, shows the resonances associated with the phenmethyl ester as
well as the hydroxyl chain-end (Fig. 8).
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Fig. 7 Effect of the reaction temperature on polymerization rate; conditions: [DTC] = 3.0 mol/L,
[DTCJ/[II/[C] = 200/1/1, in THF
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Scheme 2 Proposed Mechanism for polymerization of DTC catalyzed by 1 with BnOH

Conclusions

Imidazol-2-ylidenes synthesized are effective catalysts for the ring-opening
polymerization of DTC. 1 has higher effective and gives higher molecular weight
polymer after 70 min at [DTC]/[C)/[I] = 200/1/1, in THF, at 25 °C. The kinetics of
1/BnOH system demonstrates that the polymerization reaction proceeds with first-
order rate dependence on DTC monomer and catalyst concentration, respectively,
and the overall activation energy amounts to 51.06 kJ/mol. The proposed process is
through a monomer-activated mechanism.
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Fig. 8 "H NMR spectrum of PDTC catalyzed by 1 with BnOH
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